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To the Editor 
 
Recently, sodium-glucose cotransporter-2 inhibitors (SGLT2is) are frequently used to treat 
patients with type 2 diabetes. We previously reported that SGLT2is improve liver function in 
addition to lowering plasma glucose [1, 2]. Hepatic histological improvement by SGLT2is was 
also observed. SGLT2is reduced scores of steatosis, lobular inflammation, ballooning, and 
fibrosis stage by 78%, 33%, 22%, and 33% at 24 weeks compared to the pretreatment, 
respectively [3]. Reduction of body weight and insulin resistance by SGLT2is may be largely 
associated with an improvement of liver function [4]. However, we have not fully understood the 
potential SGLT2i-induced mechanisms for an improvement of liver. Therefore, we discussed the 
possible underlying mechanisms for an improvement of liver function due to SGLT2is by 
reviewing literatures. 
 
Reported mechanisms for an improvement of liver function due to SGLT2is are shown in Table 
1 [5-13]. Four-week repeated administration of ipragliflozin improved not only hyperglycemia 
and hyperinsulinemia but also hyperlipidemia and hepatic steatosis in high-fat diet and 
streptozotocin-nicotinamide-induced type 2 diabetic mice [5]. In addition, ipragliflozin reduced 
plasma and liver levels of oxidative stress biomarkers and inflammatory markers, and improved 
liver injury [5]. Repeated administration of ipragliflozin to streptozotocin-induced type 1 diabetic 
rats for 4 weeks significantly improved hepatic steatosis and reduced liver levels of oxidative 
stress biomarkers and plasma levels of inflammatory markers, and improved liver injury [6]. The 
effect of ipragliflozin on nonalcoholic fatty liver disease (NAFLD) in rats fed a choline-deficient 
L-amino acid-defined (CDAA) diet was reported [7]. Five weeks after starting the CDAA diet, 
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rats exhibited hepatic triglyceride (TG) accumulation, fibrosis, and mild inflammation. Repeated 
administration of ipragliflozin prevented hepatic TG accumulation, large lipid droplet formation 
and liver fibrosis. Ipragliflozin also improved hepatic steatosis in high-fat diet-induced and 
leptin-deficient obese (ob/ob) mice irrespective of body weight reduction [8]. 
Ipragliflozin-induced hyperphagia occurred to increase energy intake, attenuating body weight 
reduction with increased epididymal fat mass. However, there is an inverse correlation between 
weights of liver and epididymal fat in ipragliflozin-treated obese mice, suggesting that 
ipragliflozin promoted normotopic fat accumulation in the epididymal fat and prevented ectopic 
fat accumulation in the liver. Such an effect of SGLT2is on hepatic fat accumulation was also 
reported in humans. Luseogliflozin was reported to reduce magnetic resonance imaging-hepatic 
fat content in type 2 diabetes patients with NAFLD [9, 10]. Very recently, empagliflozin 
effectively lowered liver fat content in well-controlled type 2 diabetic patients [11]. In this study, 
empagliflozin raised adiponectin levels [11], which has beneficial effects on glucose and lipid 
metabolism including activation of adenosine 5'-monophosphate (AMP)-activated protein kinase 
(AMPK) [14]. 
 
AMPK activation was also induced by canagliflozin, which was caused by inhibition of Complex 
I of the respiratory chain, leading to increases in cellular AMP or adenosine diphosphate (ADP) 
[12]. Canagliflozin inhibited lipid synthesis, an effect that was absent in AMPK knockout cells 
and that required phosphorylation of acetyl-CoA carboxylase (ACC) at the AMPK sites [12]. 
Another study also showed that SGLT2is ameliorated fat deposition and increased AMPK 
phosphorylation, resulting in phosphorylation of its major downstream target, ACC, in human 
hepatocytes, which led to the downregulation of downstream fatty acid (FA) synthesis-related 
molecules and the upregulation of downstream β oxidation-associated molecules [15]. 
Tofogliflozin reduced the body weight gain, mainly because of fat mass reduction associated 
with a diminished adipocyte size in C57BL/6 mice [13]. Serum-free FA and ketone bodies were 
increased and the respiratory quotient was decreased in the tofogliflozin-treated mice, suggesting 
the acceleration of lipolysis in adipose tissue and hepatic β-oxidation [13]. Hepatic TG contents 
were decreased. Further, tofogliflozin ameliorates insulin resistance and obesity by increasing 
glucose uptake in skeletal muscle and lipolysis in adipose tissue. 
 
Empagliflozin shifted energy metabolism towards fat utilization, elevated AMPK and ACC 
phosphorylation in skeletal muscle in diet-induced obese mice [16]. SGLT2is induce a negative 
energy balance state by excreting glucose in the urine, which may induce alteration in 
glucose-FA cycle [17]. The fundamental concept of glucose-FA cycle is reciprocal substrate 
competition between glucose and FA in oxidative tissues such as skeletal muscles. By now, 
many new mechanisms controlling the utilization of glucose and FA have been discovered [18]. 
Dysregulation of FA metabolism is a key event responsible for insulin resistance and type 2 
diabetes [19]. We speculate that SGLT2i-mediated alteration of glucose-FA cycle may induce 
changes in glucose and lipid metabolism in skeletal muscle, adipose tissue and liver, which may 
be associated with amelioration of liver function. 
 
In conclusion, the summary of possible underlying mechanisms for an improvement of liver 
function due to SGLT2is is shown in Figure 1. SGLT2is lead to reduction of renal glucose 
reabsorption and decrease of plasma glucose in an insulin-independent manner, inducing 
reduction of body weight and insulin resistance, which may be largely associated with an 
improvement of liver function. Increased renal excretion of glucose may alter glucose-FA cycle 
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and may result in increase of FA use/oxidation in skeletal muscle and liver, and increase of 
lipolysis in adipose tissue. The improvement of insulin resistance and altered glucose-FA cycle 
may ameliorate glucose/lipid metabolic crosstalk between skeletal muscle, adipose tissue and 
liver, which may also contribute to an improvement of liver function. SGLT2is also induce 
activation of AMPK, which increases FA use/oxidation in skeletal muscle and liver, and 
decreases FA synthesis in liver. Decrease of hepatic fat accumulation by SGLT2is reduces 
oxidative stress and inflammation, which may induce amelioration of liver function. 
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Figure 1. The possible underlying mechanisms for an improvement of liver function due to 
SGLT2is. ACC: acetyl-CoA carboxylase; AMPK: adenosine 5'-monophosphate-activated protein 
kinase; FA: fatty acid; SGLT2is: sodium-glucose cotransporter-2 inhibitors; TG: triglyceride; 
AMP: adenosine 5'-monophosphate; ATP: adenosine triphosphate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1. Reported Mechanisms for an Improvement of Liver Function due to SGLT2is 
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SGLT2is References Subjects Effects on liver and putative mechanisms to 
improve liver function 

Ipragliflozin [5] Type 2 diabetic mice Improvement of hepatic steatosis and liver injury; 
reduction of plasma and liver levels of oxidative 
stress biomarkers and inflammatory markers 

Ipragliflozin [6] Type 1 diabetic rats Improvement of hepatic steatosis and liver injury; 
reduction of liver levels of oxidative stress 
biomarkers and plasma levels of inflammatory 
markers 

Ipragliflozin [7] NAFLD rats Prevention of hepatic triglyceride accumulation, large 
lipid droplet formation and liver fibrosis 

Ipragliflozin [8] Obese mice Prevention of ectopic fat accumulation in the liver 
Luseogliflozin  [9, 10] Type 2 diabetic patients with 

NAFLD 
Reduction of hepatic fat content 

Empagliflozin [11] Well-controlled type 2 
diabetic patients 

Lowering of liver fat content  

Canagliflozin [12] HEK-293 cells AMPK activation by inhibition of Complex I of the 
respiratory chain; inhibition of lipid synthesis, by 
phosphorylation of ACC at the AMPK sites in human 
hepatocytes, which leads to downregulation of fatty 
acid synthesis-related molecules and upregulation of 
β oxidation-associated molecules 

Tofogliflozin [13] C57BL/6 mice Decrease of hepatic triglyceride content; acceleration 
of lipolysis in adipose tissue and hepatic β-oxidation 

SGLT2is: sodium-glucose cotransporter-2 inhibitors; ACC: acetyl-CoA carboxylase; AMPK: 
adenosine 5'-monophosphate-activated protein kinase; NAFLD: nonalcoholic fatty liver disease; 
HEK: human embryonic kidney. 


