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Abstract

Patients who receive solid organ transplants often require lifelong im-
munosuppression, which increases their risk for hematologic disorders. 
Allogeneic hematopoietic stem cell transplantation (HSCT) offers a 
potential curative treatment option for these patients. However, there 
is still a lack of understanding and guidance on graft-vs-host disease 
(GVHD) immunosuppression regimens, potential complications, and 
outcomes in patients with solid organ transplants who undergo HSCT. 
The rate of solid organ transplantation continues to increase annually, 
making this a common clinical scenario that hematologists encounter. 
In this case series, we present three patients who underwent liver, kid-
ney and cardiac transplants and each developed hematological malig-
nancies requiring allogeneic stem cell transplant. This is the first case 
report of two patients who received post-transplant cyclophosphamide 
with mycophenolate mofetil and tacrolimus GVHD prophylaxis. We 
also review recent advances in GVHD prophylaxis in allogeneic HSCT 
and solid organ transplantation including immune tolerance and immu-
nosuppression-free protocols. Our case series support the use of post-
transplant cyclophosphamide with mycophenolate mofetil and tacroli-
mus as post-transplant GVHD prophylaxis, which does not appear to 
compromise solid organ graft function. Our case series also provides 
evidence that allogeneic HSCT is a feasible and potentially life-saving 
treatment option in patients who develop hematologic malignancies af-
ter solid organ transplantation.

Keywords: Solid organ transplantation; Hematopoietic stem cell 
transplantation; Immunosuppression; Hematologic disorders; Graft-
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Introduction

Hematopoietic stem cell transplantation (HSCT) and solid or-
gan transplantation (SOT) offer life-saving treatment options 
for patients with hematological diseases and end-stage organ 
failure and have transformed the therapeutic landscape for ter-
minal diseases and organ dysfunctions. The rate of SOT con-
tinues to increase over the years, with over 46,000 transplants 
occurring in 2023 which represents a 12.7% and 8.7% increase 
from 2021 and 2022, respectively, in the United States alone 
[1]. SOT patients often require lifelong immunosuppression 
with a subsequent increased risk of hematologic malignancies 
[2-8]. Post-transplant lymphoproliferative disorders (PTLD) 
represent one of the major lymphoid hematological malignan-
cies [9, 10], while acute myeloid leukemia (AML) and my-
elodysplastic syndrome (MDS) represent the major myeloid 
hematological malignancies in SOT recipients.

HSCT is one of the treatment modalities offered to pa-
tients who develop life-threatening hematologic disorders after 
SOT. These SOT patients who undergo HSCT face additional 
increased risk of complications including allograft rejection 
due to HSCT donor-derived immune cells, opportunistic infec-
tions due to immature post-transplant donor immune system 
and continued immunosuppressive therapy, and relapse due to 
a weakened graft-versus leukemia/lymphoma effect [11-15]. 
There is paucity of data and guidance on HSCT in SOT pa-
tients, leading to uncertainty in the management and outcomes 
in this patient population.

In this case series, we present three SOT patients who 
developed post-transplant hematologic malignancies and 
subsequently underwent allogeneic HSCT. We review recent 
new graft-vs-host disease (GVHD) prophylaxis in allogeneic 
HSCT and new advances in SOT.

Case Reports

Case 1

The patient is a 57-year-old man with a 20-year history of ul-
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cerative colitis on mesalamine. His course was complicated 
by the development of primary sclerosing cholangitis which 
required a Roux-en-Y hepaticojejunostomy and cadaver liver 
transplantation in January 2016. Post-liver transplant, he was 
maintained on tacrolimus immunosuppressant to prevent graft 
rejection. He presented with pancytopenia about 2 years post-
SOT. The bone marrow biopsy from April 2018 showed nor-
mal cellularity with relative decrease in the myeloid precur-
sors and an increased hemosiderin deposition without obvious 
dysplasia. Myeloblast was ≤ 5%, but there were trisomy 8 cy-
togenetic changes concerning for low-grade myelodysplasia. 
However, no definitive diagnosis was made. With worsening 
pancytopenia, repeat bone marrow biopsy was performed in 
August 2018, which showed AML with 90% blasts. There 
were no new molecular mutations or cytogenetic changes 
noted. The patient underwent idarubicin and cytarabine induc-
tion, and his AML achieved complete remission. His leukemia 
treatment course was complicated by Enterobacter bacteremia 

and human herpesvirus 6 (HHV6) viremia. He received one 
cycle of high-dose cytarabine (HiDAC) consolidation before 
proceeding to double cord stem cell transplant. He received 
two 6/6 human leukocyte antigen (HLA) matched cord blood 
unit infusions on February 2019, after a fludarabine-cyclo-
phosphamide-total body irradiation (200 cGy) (Flu-Cy-TBI) 
non-myeloablative conditioning regimen. He continued tac-
rolimus during his induction and consolidation chemotherapy 
and continued throughout HSCT. He also was started on my-
cophenolate mofetil (MMF) until day 28 post-HSCT for HSCT 
GVHD prophylaxis (Fig. 1).

The patient achieved neutrophil and platelet engraft-
ment at 24 days and 44 days post-HSCT, respectively. He 
also achieved full chimerism, although with mixtures of both 
cords. His HSCT course was complicated by respiratory syn-
cytial virus (RSV)/coronavirus (non-coronavirus disease 2019 
(COVID-19)) upper respiratory infections, HHV6 reactivation 
(did not require treatment), and deep vein thrombosis and pul-

Figure 1. Patient timelines. MDS: myelodysplastic syndrome; AML: acute myeloid leukemia; WBC: white blood cell; HSCT: he-
matopoietic stem cell transplantation; GVHD: graft-vs-host disease; PTLD: post-transplant lymphoproliferative disorder; DLBCL: 
diffuse large B-cell lymphoma.
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monary embolism. He developed mild acute skin GVHD that 
only required topical hydrocortisone treatment. He developed 
steroid-responsive severe chronic GVHD (cGVHD) with gas-
trointestinal, ocular, joint, skin and pulmonary involvement. 
For his bronchiolitis obliterans syndrome, he developed hy-
poxia, which was initially treated with 1 mg/kg prednisone. 
His prednisone was able to be tapered to 20 mg daily without 
major dyspnea on exertion. The patient continued tacrolimus 
post-HSCT. He moved to another state at 26 months post-
HSCT (Table 1). During this time, his liver remains functional 
without evidence of liver rejection.

Case 2

The patient is a 40-year-old man with end-stage renal dis-
ease secondary to diabetic nephropathy. He underwent renal 
transplant in 2013 and remained on sirolimus immunosup-
pressant to prevent graft rejection. In 2020, 7 years after his 
renal transplant, the patient presented with throat and ear pain 
and B symptoms. He was found to have cervical and ingui-
nal lymphadenopathy. Bilateral tonsillectomy and submental 

lymph node and nasopharynx biopsies in February 2020 re-
vealed diffuse large B-cell lymphoma (DLBCL), post-trans-
plant, non-GC type, CD5+, Pax5+, Mum-1+, BCL-2+ and nega-
tive for CD10, BCL-6, c-myc (< 5%), EMA, CD138, ALK, 
CD30, Epstein-Barr virus-encoded RNA (EBER) and cyclin 
D1. The proliferation index (Ki-67) was around 70%. Fluores-
cence in situ hybridization (FISH) study showed two abnormal 
clones: one (2.5%) had a diploid with two normal copies of 
BCL6 and an additional copy of 5′BCL6; the other (34.5%) 
had four normal fusion signals for BCL6 and two additional 
copies of 5′BCL6 (4F2G pattern). Staging positron emission 
tomography/computed tomography (PET/CT) from February 
2020 showed hypermetabolic nodal masses above and below 
the diaphragm. Left inguinal nodal mass led to lower extrem-
ity edema. His DLBCL achieved complete remission with 
six cycles of rituximab with cyclophosphamide, doxorubicin, 
vincristine, and prednisone (R-CHOP). He also received four 
cycles of intrathecal methotrexate and cytosine arabinoside for 
central nervous system (CNS) prophylaxis. Unfortunately, he 
had biopsy proven relapse of his DLBCL in January 2021. The 
Ki-67 was around 80-90%. He received two cycles of rituxi-
mab, ifosfamide, carboplatin, and etoposide (RICE) salvage 

Table 1.  Patient Characteristics

Patient 1 Patient 2 Patient 3
Type of SOT Liver Kidney Heart
Age at SOT, year 54 31 31
Indication for SOT Primary sclerosing cholangitis Diabetic nephropathy Viral myocarditis
Solid organ donor Cadaver Living Cadaver
Immunosuppression post-SOT Tacrolimus Sirolimus Tacrolimus
Hematologic diagnosis indication for HSCT MDS with progression 

to AML (trisomy 8)
PTLD-DLBCL (EBV negative) Treatment related MDS

Duration SOT to hematologic diagnosis, year 2.6 7 22.3
Duration SOT to HSCT, year 3 8.6 22.8
HSCT conditioning regimen NMA Flu-Cy-TBI NMA Flu-Cy-TBI Reduced intensity 

Flu/Bu/Cy/TBI
HSCT donor source Cord blood - HLA 6/6 Peripheral blood - first 

degree haploidentical
Peripheral blood - first 
degree haploidentical

Time to engraftment, days WBC: 44/platelet: 44 WBC: 19/platelet: 23 WBC: 20/platelet: 31
Immunosuppression post-HSCT MMF and tacrolimus Cyclophosphamide, MMF, 

and tacrolimus to sirolimus
Cyclophosphamide, 
MMF, and tacrolimus

Acute GVHD III (skin) None None
Chronic GVHD Yes No No
Overall survival from HSCT, months 27 43 13
Living status Loss to follow-up Alive Deceased secondary 

to relapse
Overall survival from HSCT, months 27 43 13
Living status Loss to follow-up Alive Deceased secondary 

to relapse

SOT: solid organ transplantation; HSCT: hematopoietic stem cell transplantation; MDS: myelodysplastic syndrome; AML: acute myeloid leukemia; 
PTLD: post-transplant lymphoproliferative disorder; DBCL: diffuse large B-cell lymphoma; EBV: Epstein-Barr virus; NMA: non-myeloablative; Flu: 
fludarabine; Cy: cyclophosphamide; TBI: total body irradiation; HLA: human leukocyte antigen; WBC: white blood cell; GVHD: graft-vs-host disease.
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chemotherapy, but unfortunately the disease progressed. He 
then proceeded with lenalidomide and tafasitamab treatment. 
He also completed 3,600 cGy (18 fractions) radiation therapy 
to the left groin. PET/CT in July 2021 showed complete re-
sponse. His treatment was then switched to tafasitamab main-
tenance every 2 weeks.

The patient underwent haploidentical HSCT with Flu-Cy-
TBI non-myeloablative conditioning in September 2021, 8.6 
years after his renal transplant. For GVHD prophylaxis, his 
sirolimus was discontinued 1 day prior to HSCT. Instead, post-
transplant cyclophosphamide (PTCy) on days +3 and +4, and 
MMF and tacrolimus started on day +5 were used. MMF was 
stopped on day +35 post-HSCT (Fig. 1). He achieved complete 
donor chimerism with neutrophil and platelet engrafted at 19 
and 23 days, respectively. Two months after HSCT, a PET/
CT scan showed increased uptake in his left inguinal lymphad-
enopathy (Deauville score 4) concerning DLBCL relapse. The 
tacrolimus dose was subsequently decreased to allow for po-
tential increased graft-versus-leukemia (GVL) effect and dis-
continued at day +94. The patient’s immunosuppressant was 
transitioned back to his sirolimus and is currently maintained 
on 0.5 mg daily. His subsequent PET/CT scans showed contin-
ued complete remission. The patient never had acute GVHD 
(aGVHD) or cGVHD or infectious disease complications and 
is now 43 months post-HSCT (Table 1). His renal function 
maintained baseline function during transplant and never had 
signs of rejection.

Case 3

The patient is a 54-year-old woman with a history of cardiac 
transplant in 1999 secondary to viral myocarditis. She was 
on tacrolimus immunosuppressant for prevention of graft 
rejection. In January 2013, she developed stage IIIA human 
papillomavirus-associated anal cancer (cT2, cN1c, cM0), but 
achieved complete remission following concurrent mitomy-
cin/fluorouracil and radiation therapy. In October 2015, she 
was diagnosed with DLBCL (PTLD), 16 years after her car-
diac transplant. Her tacrolimus immunosuppression was de-
creased, and she was monitored clinically. However, PET/CT 
in October 2016 showed progression of PTLD. Biopsy was 
consistent with GC-type DLBCL. She responded to two cycles 
of R-EPOCH (rituximab, etoposide, prednisone, Oncovin (vin-
cristine), and cyclophosphamide) and three cycles of CHOP 
(cyclophosphamide, doxorubicin, vincristine, and prednisone). 
In May 2021, she was diagnosed with MDS with bone mar-
row biopsy showing hypercellular marrow with erythroid and 
megakaryocytic dysplasia. FISH showed deletion of 5q and 
7q. Cytogenetics showed monosomy 7, 15 and 19 in addition 
to del (5). Her MDS also carried TP53 and SH2B3 mutations. 
She received five cycles of azacitidine and venetoclax with re-
duction of myeloblasts to about 1% from 3% at diagnosis. She 
proceeded with a fludarabine/busulfan/cyclophosphamide/
TBI (200 cGy) reduced intensity conditioning regimen fol-
lowed by a haploidentical stem cell transplant in November 
2021, 22 years following her cardiac transplant.

She was started on PTCy and MMF for GVHD prophy-

laxis while tacrolimus continued. Her MMF was discontinued 
on day +35 post-HSCT (Fig. 1). The patient achieved full chi-
merism with neutrophil and platelet engraftment at 20 and 31 
days, respectively. She did not develop acute or cGVHD but 
did develop renal insufficiency post-HSCT complication.

She was noted to have worsening pancytopenia 6 months 
post-HSCT. Bone marrow biopsy in May 2022 showed re-
lapsed myelodysplastic disease with 10-15% blasts. Her MDS 
had complex cytogenetics and two separate TP53 mutations. 
She was not a candidate for donor lymphocytes infusion treat-
ment due to ongoing tacrolimus immunosuppression for her 
cardiac transplant rejection prevention. Her tacrolimus dose 
was reduced, and she received three cycles of decitabine treat-
ment with initial response. However, 5 months later, her MDS 
transformed to AML with bone marrow biopsy showing 25% 
myeloblasts. At the time of her AML transformation, she had 
mixed chimerism with 43% donor (XY) and 57% host (XX). 
She was unable to receive induction chemotherapy for her 
AML due to multiple infections (pneumonia, facial cellulitis 
with or without sinusitis). She was enrolled in home hospice 
care and passed away 13 months post-HSCT (Table 1).

Discussion

Patients with solid organ transplants are at higher risk for he-
matologic malignancies. PTLD in the form of non-Hodgkin 
lymphoma is the most common hematologic malignancy after 
SOT and constitutes up to a 15-fold increased risk compared to 
the general population [2-8]. Allogeneic HSCT is a potentially 
curable treatment option for these patients. However, there is 
still little understanding and guidance in the literature of al-
logeneic HSCT in SOT recipients who develop hematologic 
malignancies, which is not an uncommon clinical scenario that 
hematologists face. In this case series, three of our patients 
underwent liver, kidney and cardiac transplant, respectively, 
and each developed hematological malignancies requiring al-
logeneic stem cell transplant. Here we review SOT patients 
requiring HSCT and new developments in the field.

Donor criteria for SOT varies based on the specific organ 
transplanted. The role of HLA matching in kidney transplanta-
tion has been well established. A higher degree of HLA match-
ing is associated with significantly improved outcomes includ-
ing graft survival and recipient survival [16-18]. However, 
HLA matching is not routinely performed in cardiac and liver 
transplantation due to organ scarcity, reducing graft cold is-
chemia time, and a lack of clarity of the impact of HLA match-
ing on transplant outcomes [19-21]. In allogeneic HSCT, HLA 
matching is an essential component, as the degree of specific 
HLA mismatches has been associated with graft failure, de-
layed immune reconstitution, increased GVHD, and increased 
mortality [22, 23]. The gold standard of allogeneic HSCT is 
high resolution typing with either an 8/8 (in USA) or 10/10 
(Europe) HLA allelic match (HLA-A, -B, -C, -DRB1, and 
-DQB1) [24]. In SOT patients undergoing allogeneic HSCT, 
there is a potential concern that HLA disparity between the 
transplanted solid organ and that of the HSCT donor may im-
pact solid organ graft survival. Detailed data on HLA disparity 
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between the solid organ and donors stem cells are often lacking 
in studies and case reports (Supplementary Material 1, www.
thejh.org). In our case series, there were no data on the HLA 
disparity between the HSCT donor and solid organ transplant 
for either patient as solid organ transplants were performed at 
different institutions and years apart. Nonetheless, neither of 
our patients experienced solid organ transplant graft failure 
with the GVHD prophylaxis strategies used for HSCT. Addi-
tional studies have demonstrated successful allogeneic HSCT 
without SOT rejection (Supplementary Material 1, www.thejh.
org) [11-13, 15]. This may partly be due to the presence and ab-
sence of permissive and nonpermissive mismatches at specific 
HLA loci, which may be influenced by additional clinical and 
immunological risk factors such as cold and warm ischemia 
times, donor source, and immunopeptidome overlap [25, 26]. 
HLA matching in solid organ transplants may also be of lesser 
significance due to improved immunosuppression and immu-
nological risk assessments, which has led to successful trans-
plantation of both well- and poorly matched solid organs.

Management and prevention of GVHD is crucial to the 
success of allogeneic HSCT and solid organ transplant. Immu-
nosuppression regimens differ between solid organ transplants 
and allogeneic HSCT (Supplementary Material 1, www.thejh.
org). Immunosuppression regimens in solid organ transplants 
generally include a calcineurin inhibitor (cyclosporin or tac-
rolimus), rapamycin (sirolimus, an mTOR inhibitor), antipro-
liferative agent (MMF or azathioprine), and glucocorticoids. 
In renal transplant patients, tacrolimus and MMF have been 
standard of care due to the landmark Symphony trial, which 
showed that renal transplant patients managed with tacrolimus 
and MMF had superior outcomes in renal function, allograft 
survival, and decreased acute rejection rates at 1 year com-
pared to regimens involving cyclosporine or sirolimus [27]. 
Three-year follow-up results did show smaller differences 
among the intent-to-treat groups than those at 1 year and did 
not reach statistical significance, which may partly be ex-
plained by substantial transitions from one treatment to anoth-
er and selection bias [28]. In liver and cardiac transplantation, 
the triple-drug immunosuppressive regimen with calcineurin 
inhibitor tacrolimus, antimetabolites mofetil mycophenolate or 
azathioprine, and short-term glucocorticoids remains the most 
commonly used accepted standard immunosuppression. Pre-
viously in allogeneic HSCT, calcineurin inhibitor and metho-
trexate had been the cornerstone for the prevention of GVHD 
[29, 30]. However, recently post-transplantation cyclophos-
phamide-based regimens have become standard of care for 
GVHD prophylaxis [31, 32]. Unlike traditional GVHD proph-
ylaxis agents such as calcineurin inhibitors and sirolimus, cy-
clophosphamide can induce apoptosis of alloantigen-activated 
T cells, while also upregulating CD95 expression increasing 
the sensitivity of T cells to CD95-mediated apoptosis [33]. 
Post-transplant cyclophosphamide also induces alloreactive 
T-cell dysfunction and suppression via preferential recovery 
of regulatory T cells [34]. In a phase III randomized clinical 
trial, allogeneic HLA-matched HSCT patients, who received 
post-transplant GVHD prophylaxis with cyclophosphamide, 
MMF, and tacrolimus, were significantly more likely to have 
GVHD-free and relapse-free survival at 1 year, compared to 
those who received tacrolimus and MMF (52.7% (95% con-

fidence interval (CI): 45.8 to 59.2) vs. 34.9% (95% CI: 28.6 
to 41.3), respectively) [32]. PTCy has also been shown to be 
effective in HLA-matched and mismatched unrelated donor 
HSCT [35]. In a phase II trial of HLA-mismatched unrelated 
donor bone marrow transplantation using PTCy, patients who 
received reduced intensity conditioning had grade 2 - 4 and 
3 - 4 aGVHD at day +100 of 33% and 0%, respectively, and 
cGVHD at 1 year of 18%. Those who received myeloablative 
conditioning had grade 2 - 4 and 3 - 4 aGVHD at day +100 of 
43% and 18%, respectively and cGVHD at 1 year of 36% [31]. 
In our literature review of HSCT in SOT patients, calcineurin 
inhibitor-based GVHD prophylaxis was used in all patients 
post-HSCT. Of these 23 patients, methotrexate, MMF, and 
ATG was used in 12, six, and 11 patients, respectively. Twelve 
patients also received concurrent steroids. None of these pa-
tients received PTCy. Of these 23 patients, five patients expe-
rienced aGVHD, two patients experienced cGVHD, and one 
patient experienced both aGVHD and cGVHD. Two patients 
had unknown GVHD status (Supplementary Material 1, www.
thejh.org). Similarly, in a retrospective multicenter study that 
evaluated allogeneic HSCT in SOT patients, patients received 
a range of calcineurin inhibitor-based GVHD prophylaxis with 
17/31 and 7/31 patients experiencing aGVHD and cGVHD, 
respectively [11]. None of these patients received PTCy. In 
our case series, all three patients were continued on SOT im-
munosuppression during treatment for their hematological 
malignancies and throughout HSCT. Patients 2 and 3 received 
PTCy, MMF, and tacrolimus GVHD prophylaxis while patient 
1 received tacrolimus and MMF. Patient 1 was the only patient 
to experience aGVHD or cGVHD. This is the first case report 
to our knowledge of PTCy with MMF, and tacrolimus GVHD 
prophylaxis in two SOT patients (Supplementary Material 1, 
www.thejh.org). The usage of PTCy did not affect SOT organ 
rejection or survival.

Novel PTCy-based regimens, such as PTCy combina-
tion with abatacept, bortezomib, vedolizumab, or PTCy with 
reduced-duration tacrolimus, or tacrolimus-free combinations, 
are being evaluated across various transplant settings, which 
will further refine GVHD prevention in HSCT [36-40]. As 
PTCy has made a substantial impact on immunosuppression 
in HSCT, similar transformative changes are now emerging 
in SOT. Solid organ transplant patients often require lifelong 
immunosuppression. Chronic immunosuppression predisposes 
patients to a myriad of potential life-threatening complica-
tions including opportunistic infections and a wide-spectrum 
of malignancies, as well as drug-related adverse effects, such 
as nephrotoxicity, neurotoxicity, cardiovascular diseases, hy-
perglycemia, and hypertension. Immune tolerance or immu-
nosuppression-free protocols have the potential to reduce or 
eliminate the need for immunosuppressive drugs in solid organ 
transplants. Therapeutic cell transfer represents a potentially 
promising approach including regulatory T-cell infusions [41, 
42]. Studies have shown that concurrent HSCT can achieve 
donor-specific tolerance with durable hematopoietic chimer-
ism in preclinical models and patients [43-46]. Costimulatory 
blockade-based immunosuppression has also provided a prom-
ising option to improve long-term allograft function through 
avoidance of calcineurin inhibitor-based immunosuppression 
regimens. In 2011, belatacept, which binds to CD80 and CD86 
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on antigen-presenting cells and thus blocks CD28-mediated 
costimulation of T lymphocytes, was the first costimulatory 
blockade agent Food and Drug Administration (FDA)-approved 
for solid organ transplant immunosuppression. In a phase III 
7-year follow-up study, patients treated with belatacept had 
greater sustained improvement in estimated glomerular filtra-
tion rate (eGFR) and survival compared to cyclosporine-treated 
patients in kidney transplant [47]. Belatacept combined with 
transient calcineurin inhibitor therapy was associated with su-
perior eGFR compared to a tacrolimus-based protocol [48]. Ad-
ditional promising costimulation blockade-based immunosup-
pression strategies include selective CD28 blockade and CD40/
CD154 blockade [49-52]. Anti-CD2 depletion with siplizumab 
has also shown potential use in selectively expanding alloreac-
tive regulatory T cells while depleting effector memory T cells 
[53, 54]. Still under early clinical trial investigation, siplizumab 
may be able to modulate functions to induce immune tolerance 
in solid organ transplant. Ongoing clinical trials are evaluating 
the use of siplizumab, donor-modified immune cells, and con-
current HSCT and recipient regulatory T cells in the induction 
of immune tolerance in solid organ transplants, which offers 
the potential to mitigate the deleterious effects of long-term im-
munosuppression [55-58]. The choice of immunosuppression 
regimens can have a significant impact on graft function and 
survival and patient morbidity and mortality. Further studies are 
needed to better understand the impact of post-transplant immu-
nosuppression regimens in both SOT and HSCT patients, which 
may lead to more individualized approaches and improved 
transplant outcomes.

Learning points

Although case report studies are subject to publication bias, 
they can provide guidance in developing individualized 
treatment approaches in the face of limited data. Our case 
series provides evidence that allogeneic HSCT is a feasible 
and potentially life-saving treatment option in patients who 
develop hematologic malignancies after SOT. Our patients 
achieved rapid engraftment and durable relapse-free survival 
with sustained solid organ transplant function despite un-
known HLA disparity between the HSCT and SOT donors. 
Post-transplant GVHD prophylaxis with cyclophosphamide, 
MMF, and tacrolimus also appears to be feasible and effec-
tive after allogeneic HSCT in SOT patients without compro-
mising solid organ graft function. Further advancements in 
post-immunosuppression therapies including costimulatory 
blockade agents may improve transplant outcomes, while 
cellular therapies may remove the need for chronic immuno-
suppression in SOT patients, mitigating the increased risk of 
complications that these patients face. However, more studies, 
including comparisons of post-transplant GVHD prophylaxis, 
conditioning regimens, and donor availability and donor-
recipient histocompatibility, are needed to better understand 
the potential complications and outcomes of HSCT in this not 
so uncommon patient population. This will allow for a more 
individualized approach with improved guidance on HSCT 
donor selection, GVHD/GVL management, surveillance, and 
immunosuppression regimens.

Supplementary Material

Suppl 1. Allogeneic-HSCT in SOT patients.
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